

High Resolution Electronic Measurements in Nano-Bio Science

Electrical measurements in liquids *Basic considerations*

Giorgio Ferrari

Milano, June 2023

Outline

- Example of electrical measurements in liquid
- The electrical behavior of the (bulk) liquid
- Metal liquid interface: charge redistribution
 - Double-layer capacitance

Next lessons:

- Charge transfer at the metal-liquid interface
- The importance of the mass transport

Example 1

<u>Oil</u>

Example 2

Distilled water

- Parallel plate electroo A_{el}= 1cm x 1cm L= 1mm
- Low frequency: resistive behavior
 - High frequency: capacitive behavior

Example 3

Tap water

 A_{el} = 1cm x 1cm L= 1mm

- Low frequency: ≈capacitive behavior
- Medium frequency: resistive behavior
- High frequency: capacitive behavior

The role of the ions

Oil

The main difference is given by the number of charge carriers

Ions
 • Charged particles

Nonionic liquids

No ions or charged particles

Non-polar molecule (oil)

Nonionic liquids

Non-polar liquids have commonly a low dielectric constant ($\epsilon_r \approx 1.5 - 4$)

Nonionic liquids

Ex. of electrical meas. of nonionic liquids Liquid level sensors

$$C_{meas} \approx \frac{W}{L} \left[\epsilon_{liq} \, \mathbf{h} + \epsilon_{air} \, (\mathbf{d} - \mathbf{h}) \right] = \frac{W}{L} \left(\epsilon_{liq} - \epsilon_{air} \right) \mathbf{h} + \frac{W}{L} \epsilon_{air} \mathbf{d}$$

No specific instrumentation or measurement technique

Ex.: analysis of suspended particles

 $\begin{array}{ll} C_{\text{liquid only}} = \epsilon_{\text{l}} \cdot S & \epsilon_{\text{l}} \text{ dielectric constant of the liquid, S geometrical factor} \\ C_{\text{liquid+particles}} = \epsilon_{\text{e}} \cdot S & \rightarrow & \epsilon_{\text{e}} = \epsilon_{\text{l}} C_{\text{liquid+particles}} / C_{\text{liquid only}} \end{array}$

For small particles (<10 μ m, effective medium theory):

$$f\frac{\epsilon_p - \epsilon_e}{\epsilon_p + 2\epsilon_e} = (1 - f)\frac{\epsilon_l - \epsilon_e}{\epsilon_l + 2\epsilon_e}$$

f= volume fraction

- $\epsilon_{\rm p}$ dielectric const. of particles
- 1925 (Fricke, Morse): cell membrane thickness (4nm!)
- dipole moment of molecules [Thompson, J. Chem. Educ., 1966]

Electrical meas. of biological samples

- ~65% of body mass is water
- Cells, enzymes, proteins,...
 ... "survive" only in water
 <u>+ a lot of ions</u>

...must operate with ionic solutions (electrolytes)!

Electrolytes

Liquid (water)+ ions

Electrolytes

Liquid + ions

Conductive behavior

charge transport

Electrolytes

Liquid + ions

Conductive behavior

charge transport

Charge Transport

Diffusion

 $\propto \frac{\partial C_i(x)}{\partial x}$ (*C_i* concentration)

Drift (migration)

 $\propto C_i E(x)$ (*E* electric field)

- Convection (fluid motion)
 - Natural (density gradient)
 - Mechanical (stirring, flow in microfluidic channel...)

 $\propto C_i v(x)$ (*v* velocity of sol.)

Diffusion Migration (\mathbf{f}) Convection

Wang, Analytical Electrochemistry

Drift current

Current density due to the charged species i:

 $J_i = z_i q p_i \mu_i E(x)$

- z_i = number of charge (dimensionless) of species i
- q= elementary charge (1.6 10^{-19} C) μ_i = mobility [cm²/Vs] E(x) = electric field [V/cm]

 $p_i = \text{concentration in #ions/cm}^3 = C_i \cdot N_{Av} / 1000$

 N_{Av} =Avogadro const. N_{Av} ≈ 6·10²³ ions/mole

all charged species

 $I_{TOT} = \sum_{i} A J_i$

A= surface

C_i= *molar concentration* = mol / liter

$$J_i = z_i F \mu_i \frac{C_i}{1000} E(x)$$

= Faraday constant =
$$q N_{Av}$$

$$\sigma_i = z_i q \ p_i \mu_i = \frac{z_i F \mu_i C_i}{1000}$$

conductivity (1/resistivity)

F

Mobilities and diffusion coefficients

(low concentration, no interionic interactions)

Ionic mobilities of various ions in water [19]

Cation	Mobility (10 ⁻⁴ cm ² /Vs)	Anion	Mobility (10 ⁻⁴ cm ² /Vs)
H^+	36.3	OH^-	20.5
Li ⁺	4	F^-	5.7
Na^+	5.2	Cl ⁻	7.9
K^+	7.6	Br^{-}	8.1
NH_4^+	7.6	I^-	8.0
Ca ²⁺	6.2	NO_3^-	7.4
Mg^{2+}	5.5	HCO ₃	4.6
La ³⁺	7.2	SO_4^{2-5}	8.3
Ag^+	6.4	$Fe(CN)_6^{3-}$	10.5
$(\widetilde{CH}_3)_4 N^+$	4.7	× 70	
$\mu \approx 5 \cdot 1$	$0^{-4} \frac{cm^2}{Vs} \qquad D$	$P \approx 10^{-5} \frac{cm^2}{s}$	Silicon: μ ≈ 1000 cm²/Vs D ≈ 20 cm²/s

Equivalent circuit of bulk solution

$$\begin{split} C_{sol} &\propto \epsilon_{liquid} \\ R_{sol} &\propto \rho \propto \frac{1}{\mu \cdot Concentration} \end{split}$$

 C_{sol} and R_{sol} are geometry-dependent

Parallel plate electrodes, area A

Small disk: diameter d \ll L

Dielectric relaxation time

Examples of solution

• pure water: $pH = 7 \rightarrow C_{\mu+} = 10^{-7} \text{ M} \rightarrow \rho \approx 20 \text{ M}\Omega \cdot \text{ cm}, \epsilon_r \approx 78$

$$\Rightarrow \tau_{d} \approx 140 \mu \text{s}, \quad f_{d} \approx 1 \text{ kHz}$$

• tap water:

 Phosphate Buffered Saline (PBS) commonly used for *in-vitro* biological research

Dulbecco's formula: 137mM NaCl; 8.10mM Na₂HPO₄; 2.68mM KCl;...

1M means N_A= 6.10²³ molecules per liter $\rightarrow \approx 10^{20}$ ions/cm³ !

$$\rho \approx 60 \ \Omega \cdot \text{ cm}, \ \varepsilon_r \approx 78$$

same ρ of silicon doped with $\approx 10^{14}$ cm⁻³ moderate conductor for electronics

$$rac{1}{r}$$
 $\tau_{d} \approx 0.5 \text{ns}$, $f_{d} \approx 350 \text{ MHz}$

Electrical current in electrolytes

Metal-liquid interface

G. Ferrari - Electrical measurements in liquids

Charge redistribution at the interface

interface electric field: 10-100MV/cm!!!

Electrical Model (Stern model)

Restriction to the closest approach of ions

IHP (≈0.2nm): inner Helmholtz plane: specifically adsorbed ions (bond formation / desolvated)

OHP (≈0.4nm) outer Helmholtz plane: minimum distance of solvated ions (nonspecifically adsorbed, only electrostatic force)

Diffuse layer (\approx 1-10nm): distribution of ions from OHP to bulk due to thermal motion

Compact layer capacitance

Restriction to the closest approach of ions

Diffuse layer capacitance

Ion concentration determined by Boltzman statistics + Poisson eq.

$$\frac{\tanh(zq\phi/4kT)}{\tanh(zq\phi_0/4kT)} = \exp\left(-\frac{x}{L_D}\right)$$

zq= charge of the single ion ϕ_0 = potential drop across the diffuse layer (V-V_{zero charge})

> for $\phi_0 < 50mV$: $\phi(x) \cong \phi_0 \exp(-x/L_D)$

$$L_D = \sqrt{\frac{\epsilon kT}{2z^2 q^2 C_0}}$$

Debye length diffuse layer "thickness"

 C_0 = ion concentration in the bulk

Diffuse layer capacitance

Ion concentration determined by Boltzman statistics + Poisson eq.

Diffuse layer capacitance

depends on the potential (Φ_0) and concentration (L_D)

Electrical Model (Stern model)

Double layer capacitance

Potential (V vs NCE)

PBS:

POLITECNICO MILANO 1863 G. Ferrari

FIGURE 1-13 Double-layer capacitance of a mercury drop electrode in NaF solutions of different concentrations. (Reproduced with permission from reference 5.)

Wang, Analytical Electrochemistry

C_H depends on potential, saturated dielectric, ion-ion interaction, adsorption,...

Well-defined electrode surface

Strong sensitivity to the atomic structure of the surface !

«Real area» of an electrode

C_{dl} depends on the first few nm of the interface (e.g. in PBS)

Double layer follows hills and valleys having size \gg Debye length \downarrow

nanoscale area of C_{dl} could be 2-3 times the macroscopic "geometrical area"

Atomic scale disorder

distribution of time constants

$$\frac{1}{Z} = Y = \sum_{i} \left(R_i + \frac{1}{sC_i} \right)^{-1}$$

Constant Phase Element

"Slope" of C_{dl} is less than 1 (n = 0.8-0.9) U $Z_{CPE} = \frac{1}{Q(j\omega)^n}$ surface disorder, porous electrodes,

adsorption, ...

Excellent for fitting experimental data (no clear physical insight)

CPE: Look at the Phase

POLITECNICO MILANO 1863

G. Ferrari - Electrical measurements in liquids

Summary

 Ions make the liquid a conductor: very small mobility (≈ 5.10⁻⁴ cm²/Vs), but the ion concentration could be high (PBS: 10²⁰ ions/cm³)

•
$$R_{solution} = \rho \cdot \text{geometrical factor}, C_{solution} = \varepsilon / \text{geom. factor}$$

 $1/\rho = \sum z_i q \ p_i \mu_i = \sum z_i q \ \frac{N_{av}C_i}{1000} \mu_i, \quad \varepsilon = 78 \text{ (water)}$

- Resistive behavior up to frequency ≈ 1/(2πρε) physiological solution (PBS) is a "reasonable" conductor up to ≈350MHz
- Metal-liquid interface: a complex charge redistribution
 → double-layer capacitance
- C_{dl} has an enormous value (PBS: 10-40 μ F/cm²)
- Double layer is sensitive to the roughness and atomic structure of the surface $\rightarrow C_{dl}$ is not a very well-controlled value
- In many practical cases, C_{dl} is an imperfect capacitor

→ constant phase element: $Z_{CPE} = \frac{1}{Q(j\omega)^n}$

Small signal equivalent model

POLITECNICO MILANO 1863

G. Ferrari - Electrical measurements in liquids